FE-Fusion-VPR: Attention-Based Multi-Scale Network Architecture for Visual Place Recognition by Fusing Frames and Events
نویسندگان
چکیده
Traditional visual place recognition (VPR), usually using standard cameras, is easy to fail due glare or high-speed motion. By contrast, event cameras have the advantages of low latency, high temporal resolution, and dynamic range, which can deal with above issues. Nevertheless, are prone failure in motionless scenes, while still provide appearance information this case. Thus, exploiting complementarity effectively improve performance VPR algorithms. In paper, we propose FE-Fusion-VPR, an attention-based multi-scale network architecture for by fusing frames events. First, intensity frame volume fed into two-stream feature extraction shallow fusion. Next, three-scale features obtained through fusion aggregated three sub-descriptors VLAD layer. Finally, weight each sub-descriptor learned descriptor re-weighting obtain final refined descriptor. Experimental results show that our FE-Fusion-VPR outperforms existing frame-based, event-based fusion-based methods most cases on Brisbane-Event-VPR DDD20 datasets. a word, compared previous works, achieves new state-of-the-art (SOTA) datasets
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولAAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding
Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a “one-size-fits-all” approach when concerning multi-scale structure information, such as firstand second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an...
متن کاملBio-inspired homogeneous multi-scale place recognition
Robotic mapping and localization systems typically operate at either one fixed spatial scale, or over two, combining a local metric map and a global topological map. In contrast, recent high profile discoveries in neuroscience have indicated that animals such as rodents navigate the world using multiple parallel maps, with each map encoding the world at a specific spatial scale. While a number ...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملVisual Place Recognition for Autonomous
Visual Place Recognition for Autonomous Robots Hemant D. Tagare Department of Diagnostic Radiology and Department of Electrical Engineering Drew McDermott Hong Xiao Department of Computer Science Yale University ftagare, mcdermott,[email protected] Abstract| The problem of place recognition is central to robot map learning. A robot needs to be able to recognize when it has returned to a previou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2023
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2023.3268850